Spoken Document Classification Based on Lsh
نویسنده
چکیده
We present a novel scheme of spoken document classification based on locality sensitive hash because of its ability of solving the approximate near neighbor search in high dimensional spaces. In speechtext conversion stage, although lattice can provide multi-hypothesis during speech recognition, it is too complex to extract proper word information. Confusion network is adopted to improve word recognition rate while keeping the corresponding posterior probability. In vector space model, modified tfidf on posterior probability is proposed to handle the negative effects of the words with very low posterior probability. Furthermore, after generating the indexing structure based on locality sensitive hash, 1-nearest and N-nearest schemes are adopted in classifier. To spare the execution time, fast locality sensitive hash is conducted. Experiments on the data from four kinds of video programs show the effectiveness of proposed scheme.
منابع مشابه
Document Analysis And Classification Based On Passing Window
In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملTwo-Stage Hashing for Fast Document Retrieval
This work fulfills sublinear time Nearest Neighbor Search (NNS) in massivescale document collections. The primary contribution is to propose a two-stage unsupervised hashing framework which harmoniously integrates two state-of-theart hashing algorithms Locality Sensitive Hashing (LSH) and Iterative Quantization (ITQ). LSH accounts for neighbor candidate pruning, while ITQ provides an efficient ...
متن کاملA Document Weighted Approach for Gender and Age Prediction Based on Term Weight Measure
Author profiling is a text classification technique, which is used to predict the profiles of unknown text by analyzing their writing styles. Author profiles are the characteristics of the authors like gender, age, nativity language, country and educational background. The existing approaches for Author Profiling suffered from problems like high dimensionality of features and fail to capture th...
متن کامل